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LETTER TO THE EDITOR 

The dynamic exponent of the diffusion coefficient of a long 
polymer chain in good solvents 

S Stepanow 
Technische Hochschule ‘Carl Schorlemmer’ Leuna-Merseburg, Sektion Physik, 4200 
Merseburg, G D R  

Received 22 March 1984 

Abstract. The path integral formulation of polymer dynamics proposed by the author 
enables one to obtain perturbation expansions for the transport quantities in powers of 
the excluded volume and the hydrodynamic interactions. The renormalisation-group analy- 
sis of the perturbation expansion of the diffusion coefficient gives, to first order of E = 4 - d 
(d is the space dimension), the dynamic exponent v D  ( D -  N - ” D )  vD=f+&,&. 

Dynamical scaling (de Gennes 1979) predicts that the dynamical exponents are 
expressed through the static exponent v. This prediction does not agree, however, with 
experiment. For example, for the diffusion coefficient dynamical scaling gives vD = v = 
0.588, whereas experimentally vD = 0.54-0.56. Weill and des Cloizeaux (1979) explained 
this discrepancy by the argument that the mean reciprocal radius converges more 
slowly to the asymptotic limit ( N  + 00) than the radius of gyration. As a result, the 
experimental studies measure an effective exponent. The true dynamic exponent, 
however, coincides with v in accordance with the prediction of de Gennes. 

The explanation of Weill and des Cloizeaux, which is based on the Kirkwood 
formula for the diffusion coefficient, is approximate and cannot be considered as the 
final solution of the problem. A better consideration is possible in the framework of 
the perturbation expansions of the transport quantities. The path integral formulation 
of the dynamics of one polymer chain in solution proposed by the author (Stepanow 
1983,1984) enables one to obtain the perturbation expansions of the transport quantities 
in powers of the excluded volume and the hydrodynamic interactions. In this paper 
we study the diffusion coefficient in good solvents on the basis of the perturbation 
expansion. 

The idea of path integral formulation consists of the following. The Kirkwood 
diffusion equation is a Fokker-Planck equation, which is the differential equation for 
Markovian processes. The transition probability for these processes is, indeed, a path 
integral. Here, we use the formalism proposed for the Fokker-Planck equation by 
Langouche er a1 (1979). The generating functional Z(j , j* )  plays an important role 
in this formalism. We have shown (Stepanow 1984) that the dynamic quantities, such 
as the inelastic scattering function, diffusion coefficient and intrinsic viscosity, can be 
expressed through Z ( j ,  j * ) .  In this way we obtain the Feynman-like perturbation 
expansions for the dynamic quantities in powers of the excluded volume strength uo 
and the hydrodynamic interaction. In general, the perturbation series diverge 
logarithmically in four dimensions. These divergences appear as a consequence of the 
continuous chain which breaks down at the length A - I ( I  is the statistical segment 
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length). Using A as a cutoff, which eliminates the interaction on lengths smaller than 
A, we transform the infinities to logarithms ln(L/A) ( L  is the arc length of the chain). 
In &conditions, the excluded volume strength will become zero and the series in 
powers of the hydrodynamic interaction still remains. The expansion parameter for 
the hydrodynamic interaction is conveniently chosen as follows: 6 = 
( d / 2 ~ r l ) ~ / ~ ( ~ z / ~ ) I / d .  5 is the friction coefficient, 7 the solvent viscosity, and d the 
space dimension. The contribution of the hydrodynamic interaction, to first order in 
6, to the diffusion coefficient (the Kirkwood term) contains the logarithmic singularity 
(see equation (3)) in four dimensions. The straightforward calculation which was 
performed by the author shows that the second-order contribution is regular. It is to 
be expected that the next terms in the expansion in powers of 6 are also regular. Then, 
the perturbation expansion in powers of 6 will have the form 

$$L-' ln(L/A) + L- ' f (E) .  

In the asymptotic limit the Kirkwood term leads. In d dimensions, the expansion 
parameter changes to .$1'l2 NE/' (E =4-d) .  Expanding N"12 in powers of E we 
represent the contribution of the hydrodynamic interaction for small E as follows 

[(d - l)/d]&2/~)L-""* + L-'cf,(S) +~f , ( [ )  ln(N) + . . .). (1) 

The functions fo and fl can be evaluated by means of perturbation theory. In the 
vicinity of four dimensions, the first term in (1 )  remains leading for large L. The 
Kirkwood term is also leading in three dimensions if we break off expansion (1) after 
the first terms and then put E = 1. 

Now we investigate the contribution of the excluded volume interaction to the 
diffusion coefficient. The diagrams contributing to D up to U; are given by Stepanow 
(1984, 0 9). For the evaluation of to first order of E the main logarithms of these 
diagrams are necessary. The result is 

(2) 

The factor ( d / 2 ~ l ) ~ / ~ l - ~  is absorbed in uo. The transition to d dimensions is carried 
out by the change ln(L/A)+(2/E)(L"2-AE/2). 

The aim of the renormalisation is the absorbtion of the logarithms produced by 
the excluded volume on the right-hand side of equation (2) in the parameters of the 
theory. We suppose that these logarithms change only the chain length L and the 
excluded volume strength uo. Equation (2) gives to first order of uo 

(3) 

l D / k T =  l / N + [ ( d -  l)/d][L-' ln(L/A)(l -uoln(L/A)+3v~ln2(L/A)) 

L' = L( 1 + vo In(L/A)). 

The term 3 u i  ln2(L/A) in (2) contributes to L' in the second order of uo and also changes 
uo in the term -uo ln(L/A). We write the equation for the effective interaction in the form 

U = uo( 1 - pu, ln(L/A)), (4) 
P is a constant which will be fixed below. Equations (3) and (4) can be regarded as 
a change of the parameter L and uo due to the change of the cutoff from A to L. We 
arrive at the concept of the renormalisation group if we carry out this change step by 
step. Performing the infinitesimal transformation we obtain the following differential 
equations 

( 5 )  
The integration of equations ( 5 )  with the boundary conditions 

A'a In L'/aA = U A '  av/aA' = - pu2. 

v(A)  = 00, L'(A) = L and A ' =  L', u(A' )  = U 
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gives 

U =  u0/(l +/3uoIn(L'/A)) 

L' = L( 1 + pn, In( L'/ A))'". 

The comparison of the expansion of 1/L' with the expression in brackets on the 
right-hand side of equation (2)  yields p = 5 .  In d dimensions equations (6H7) are 

U =  U , / [ l  + +(lo/E)UoL'"'2] 

L'= L[l  +( lO/&)uOL'E/*] ' /~ .  (8) 

In the asymptotic limit equation (8) gives 

where the dynamic exponent vD is obtained as 

VD = t + E/20 

with vD = 0.55 for d = 3 .  The equation ( 2 )  gives after renormalisation for the diffusion 
coefficient in d dimensions 

(9) 

It can be easily proved that for small E equation (9) reproduces the perturbation limit 
in the approximation employed. 

In this work we deal for the first time with the theory of the diffusion coefficient 
on the basis of the perturbation expansion. The renormalisation group analysis of the 
perturbation series in the vicinity of four dimensions enables us to obtain the dynamic 
exponent of the diffusion coefficient. The exponent is calculated up to first order in 
E .  It does not coincide with the static exponent as predicted by the dynamical scaling 
of de Gennes (1979). The reason for this discrepancy probably consists in the different 
character of the perturbation expansions. The dynamical scaling approach deals with 
the Kirkwood formula for the diffusion coefficient which produces the perturbation 
expansion in powers of the interaction energy. This is a consequence of the pre- 
averaging of the hydrodynamic interaction. Our perturbation expansion is in fact an 
expansion in powers of the excluded volume force. Although, the value 0.55 for vD 
obtained in the first order of E agrees well with experiment, we do not know how the 
&*-correction alters this result. The evaluation of vD in the same order as the static 
exponent requires much more effort. 

l D / k T =  1 / N  + [ ( d  - l ) / d ] ~ ( 2 / ~ ) L ' - ' + " / ~ .  

I wish to thank Professor G Helmis and Dr E Straube for valuable discussions. 
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